On the quasi-conformal curvature tensor of an almost Kenmotsu manifold with nullity distributions

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spacetimes admitting quasi-conformal curvature tensor

‎The object of the present paper is to study spacetimes admitting‎ ‎quasi-conformal curvature tensor‎. ‎At first we prove that a quasi-conformally flat spacetime is Einstein‎ ‎and hence it is of constant curvature and the energy momentum tensor of such a spacetime satisfying‎ ‎Einstein's field equation with cosmological constant is covariant constant‎. ‎Next‎, ‎we prove that if the perfect flui...

متن کامل

spacetimes admitting quasi-conformal curvature tensor

‎the object of the present paper is to study spacetimes admitting‎ ‎quasi-conformal curvature tensor‎. ‎at first we prove that a quasi-conformally flat spacetime is einstein‎ ‎and hence it is of constant curvature and the energy momentum tensor of such a spacetime satisfying‎ ‎einstein's field equation with cosmological constant is covariant constant‎. ‎next‎, ‎we prove that if the perfect...

متن کامل

On 3-dimensional Almost Kenmotsu Manifolds Admitting Certain Nullity Distribution

The aim of this paper is to characterize 3-dimensional almost Kenmotsu manifolds with ξ belonging to the (k, μ)′-nullity distribution and h′ 6= 0 satisfying certain geometric conditions. Finally, we give an example to verify some results.

متن کامل

Conformal transformation in an almost Hermitian manifold

Abstract. In this paper, we have studied a conformal transformation between two almost Hermitian manifolds and shown that the associated Nijenhuis tensor is conformally invariant under this transformation. We have also discussed the properties of contravariant almost analytic vector field, covariant almost analytic vector field and some other properties in almost Hermitian manifold under this t...

متن کامل

Relating the curvature tensor and the complex Jacobi operator of an almost Hermitian manifold

Let J be a unitary almost complex structure on a Riemannian manifold (M, g). If x is a unit tangent vector, let π := Span{x, Jx} be the associated complex line in the tangent bundle of M . The complex Jacobi operator and the complex curvature operators are defined, respectively, by J (π) := J (x) + J (Jx) and R(π) := R(x, Jx). We show that if (M, g) is Hermitian or if (M,g) is nearly Kähler, th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Facta Universitatis, Series: Mathematics and Informatics

سال: 2018

ISSN: 2406-047X,0352-9665

DOI: 10.22190/fumi1802255d